Relevante Studien

Einfluss von Zucker auf die Krebsentstehung

  • Bruijn, K. M. de et al. (2013): Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg 100 (11): 1421–1429.
    [Link zum Abstract].
  • Eslamian, G. et al. (2013): Higher glycemic index and glycemic load diet is associated with increased risk of esophageal squamous cell carcinoma: a case-control study. Nutr Res 33 (9): 719–725.
    [Link zum Abstract].
  • Gnagnarella, P. et al. (2008): Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am J Clin Nutr 87 (6): 1793–1801.
    [Link zum Artikel].
  • Goto, A. et al. (2016): High hemoglobin A1c levels within the non-diabetic range are associated with the risk of all cancers. Int J Cancer 138 (7): 1741–1753.
    [Link zum Artikel].
  • Hu, J. et al. (2013): Glycemic index, glycemic load and cancer risk. Ann Oncol 24 (1): 245–251.
    [Link zum Artikel].
  • Hua, F.; Yu, J. J.; Hu, Z. W. (2016): Diabetes and cancer, common threads and missing links. Cancer Lett 374 (1): 54–61.
    [Link zum Abstract].
  • Huang, Y. et al. (2014): Prediabetes and the risk of cancer: a meta-analysis. Diabetologia 57 (11): 2261–2269.
    [Link zum Abstract].
  • Jansen, N. (2017): Die Bedeutung des ketogenen Stoffwechsels in der Tumortherapie. Lebendige Wissenschaft: Spitzenforschung in der Gynäkologischen Onkologie und Senologie.
    [Link zum Artikel].
  • Jee, S. H. et al. (2005): Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293 (2): 194–202.
    [Link zum Artikel].
  • Liu, H. et al. (2010): Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 70 (15): 6368–6376.
    [Link zum Artikel].
  • Onodera, Y.; Nam, J. M.; Bissell, M. J. (2014): Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest 124 (1): 367–384.
    [Link zum Artikel].
  • Romieu, I. et al. (2012): Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 96 (2): 345–355.
    [Link zum Artikel].
  • Schmidt, J. A. et al. (2014): Insulin-like growth factor-i and risk of differentiated thyroid carcinoma in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 23 (6): 976–985.
    [Link zum Artikel].
  • Turati, F. et al. (2015): High glycemic index and glycemic load are associated with moderately increased cancer risk. Mol Nutr Food Res 59 (7): 1384–1394.
    [Link zum Abstract].

Ketogene Ernährung / Metabolische Therapie

  • Abdelwahab, Mohammed G. et al. (2012): The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 7 (5)e36197.
    [Link zum Artikel].
  • Allen, B. G. et al. (2014): Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol 2: 963–970.
    [Link zum Artikel].
  • Allen, Bryan G. et al. (2013): Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 19 (14): 3905–3913.
    [Link zum Artikel].
  • Brand, A. et al. (2016): LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab 24(5):657-671.
    [Link zum Artikel].
  • Branca, J. J.; Pacini, S.; Ruggiero, M. (2015): Effects of Pre-surgical Vitamin D Supplementation and Ketogenic Diet in a Patient with Recurrent Breast Cancer. Anticancer Res 35 (10): 5525–5532.
    [Link zum Abstract ].
  • Branco, A. F. et al. (2016): Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest 46 (3): 285–298.
    [Link zum Abstract ].
  • Brandhorst, S. et al. (2017): Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev.
    [Link zum Artikel].
  • Breitkreutz, R. et al. (2005): Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study. Wien Klin Wochenschr 117 (19-20): 685–692.
    [Link zum Artikel].
  • Champ, C. E. et al. (2013): Nutrient restriction and radiation therapy for cancer treatment: when less is more. Oncologist 18 (1): 97–103.
    [Link zum Artikel].
  • Champ, C. E. et al. (2014): Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neurooncol 117 (1): 125–131.
    [Link zum Abstract ].
  • Chang, H. T.; Olson, L. K.; Schwartz, K. A. (2013): Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab (Lond) 10 (1): 47.
    [Link zum Artikel].
  • Diaz-Moralli, S. et al. (2016): A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget.
    [Link zum Artikel].
  • Dorr, JR et al. (2013): Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501 (7467): 421–425.
    [Link zum Abstract ].
  • El, Mjiyad N. et al. (2011): Sugar-free approaches to cancer cell killing. Oncogene 30 (3): 253–264.
    [Link zum Abstract ].
  • Emond, J. A. et al. (2014): Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. Cancer Epidemiol Biomarkers Prev 23 (7): 1273–1279.
    [Link zum Artikel].
  • Fine, E. J. et al. (2009): Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int 9: 14.
    [Link zum Artikel].
  • Fine, E. J. et al. (2012): Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 28 (10): 1028–1035.
    [Link zum Abstract ].
  • Fogg, V. C.; Lanning, N. J.; Mackeigan, J. P. (2011): Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30 (8): 526–539.
    [Link zum Artikel].
  • Freedland, S. J. et al. (2008): Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 68 (1): 11–19.
    [Link zum Artikel].
  • Gatenby, R. A.; Gillies, R. J. (2004): Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4 (11): 891–899.
    [Link zum Abstract ].
  • Groot, S. de et al. (2015): The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 15: 652.
    [Link zum Artikel].
  • Ho, V. W. et al. (2011): A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation. Cancer Res 71 (13): 4484–4493.
    [Link zum Artikel].
  • Hsu, P. P.; Sabatini, D. M. (2008): Cancer cell metabolism: Warburg and beyond. Cell 134 (5): 703–707.
    [Link zum Artikel].
  • Husain, Z. et al. (2013): Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191 (3): 1486–1495.
    [Link zum Artikel].
  • Jansen, N.; Walach, H. (2016): The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: A case series in general practice. Oncol Lett 11 (1): 584–592.
    [Link zum Artikel].
  • Jin, L. et al. (2014): The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17~92 cluster. Breast Cancer Res Treat 146 (1): 41–50.
    [Link zum Artikel].
  • Kankova, K.; Hrstka, R. (2012): Cancer as a metabolic disease and diabetes as a cancer risk? Klin Onkol 25 Suppl 22S26-31.
    [Link zum Abstract ].
  • Klement, R. J. (2014): Restricting carbohydrates to fight head and neck cancer-is this realistic? Cancer Biol Med 11 (3): 145–161.
    [Link zum Artikel].
  • Klement, R. J.; Champ, C. E. (2014): Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R’s through dietary manipulation. Cancer Metastasis Rev 33 (1): 217–229.
    [Link zum Artikel].
  • Klement, R. J.; Kammerer, U. (2011): Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond) 8: 75.
    [Link zum Artikel].
  • Klement, R. J.; Sweeney, R. A. (2016): Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Res Notes 9: 143.
    [Link zum Artikel].
  • Lee, C. et al. (2012): Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 4 (124)124ra27.
    [Link zum Artikel].
  • Lee, C.; Longo, V. D. (2011): Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30 (30): 3305–3316.
    [Link zum Abstract ].
  • Li, B. et al. (2014): Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13 (2): 367–378.
    [Link zum Artikel].
  • Longo, V. D.; Fontana, L. (2010): Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31 (2): 89–98.
    [Link zum Artikel].
  • Lu, W., Logsdon, CD., Abbruzzese, JL (2013): Cancer Metabolism and Its Therapeutic Implications. J Cell Sci Ther 04 (02).
    [Link zum Artikel].
  • Lussier, D. M. et al. (2016): Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 16: 310.
    [Link zum Artikel].
  • Lv, M. et al. (2014): Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS One 9 (12)e115147.
    [Link zum Artikel].
  • Marinac, Catherine R. et al. (2016): Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol 2 (8): 1049–1055.
    [Link zum Abstract].
  • Maurer, G. D. et al. (2011): Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 11: 315.
    [Link zum Artikel].
  • Meijer, T. W. et al. (2012): Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18 (20): 5585–5594.
    [Link zum Artikel].
  • Oleksyszyn, J. (2011): The complete control of glucose level utilizing the composition of ketogenic diet with the gluconeogenesis inhibitor, the anti-diabetic drug metformin, as a potential anti-cancer therapy. Med Hypotheses 77 (2): 171–173.
    [Link zum Abstract ].
  • Oliveira, Camila L.P. et al. (2017): A Nutritional Perspective of Ketogenic Diet in Cancer. A Narrative Review. Journal of the Academy of Nutrition and Dietetics.
    [Link zum Abstract].
  • Otto, C. et al. (2008): Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8: 122.
    [Link zum Artikel].
  • Otto, C. et al. (2014): Experimentelle Untersuchungen zur Verstoffwechselung von Ketonkörpern und Laktat durch Tumorzellen des Gastrointestinaltrakts. Aktuel Ernahrungsmed 39 (01): 51–59.
    [Link zum Artikel].
  • Paoli, A. et al. (2013): Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 67 (8): 789–796.
    [Link zum Artikel].
  • Phan, L. M.; Yeung, S. C.; Lee, M. H. (2014): Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 11 (1): 1–19.
    [Link zum Artikel].
  • Poff, A. M. et al. (2013): The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 8 (6)e65522.
    [Link zum Artikel].
  • Poff, A. M. et al. (2014): Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer 135 (7): 1711–1720.
    [Link zum Artikel].
  • Raffaghello, L. et al. (2010): Fasting and differential chemotherapy protection in patients. Cell Cycle 9 (22): 4474–4476.
    [Link zum Artikel].
  • Rieger, J. et al. (2014): ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol 44 (6): 1843–1852.
    [Link zum Artikel].
  • Safdie, F. et al. (2012): Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One 7 (9)e44603.
    [Link zum Artikel].
  • Schmidt, M. et al. (2011): Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr Metab (Lond) 8 (1): 54.
    [Link zum Artikel].
  • Schroeder, U. et al. (2013): Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 65 (6): 843–849.
    [Link zum Abstract ].
  • Schwartz, K. et al. (2015): Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab 3: 3.
    [Link zum Artikel].
  • Seyfried, T. N. et al. (2014): Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 35 (3): 515–527.
    [Link zum Artikel].
  • Seyfried, T. N.; Mukherjee, P. (2005): Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2: 30.
    [Link zum Artikel].
  • Shi, Y. et al. (2012): Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer 12: 571.
    [Link zum Artikel].
  • Shukla, S. K. et al. (2014): Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2: 18.
    [Link zum Artikel].
  • Simone, B. A. et al. (2013): Selectively starving cancer cells through dietary manipulation: methods and clinical implications. Future Oncol 9 (7): 959–976.
    [Link zum Abstract ].
  • Smyl, C. (2016): Ketogenic Diet and Cancer-a Perspective. Recent Results Cancer Res 207: 233–240.
    [Link zum Abstract ].
  • Tan-Shalaby, J. (2017): Ketogenic Diets and Cancer. Emerging Evidence. Fed Pract 34 (supp 1)37S–42S.
    [Link zum Artikel].
  • Veech, R. L. (2004): The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 70 (3): 309–319.
    [Link zum Abstract ].
  • Vergati, M. et al. (2017): Ketogenic diet and other dietary intervention strategies in the treatment of cancer. Curr Med Chem.
    [Link zum Artikel].
  • Wanka, C.; Steinbach, J. P.; Rieger, J. (2012): Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem 287 (40): 33436–33446.
    [Link zum Artikel].
  • Woolf, E. C. et al. (2015): The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model. PLoS One 10 (6)e0130357.
    [Link zum Artikel].
  • Woolf, E. C.; Scheck, A. C. (2015): The ketogenic diet for the treatment of malignant glioma. J Lipid Res 56 (1): 5–10.
    [Link zum Artikel].
  • Woolf, E. C.; Syed, N.; Scheck, A. C. (2016): Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate. Novel Approaches to Adjuvant Brain Tumor Therapy. Front. Mol. Neurosci. 9e36197.
    [Link zum Artikel]
  • Wright, C.; Simone, N. L. (2016): Obesity and tumor growth: inflammation, immunity, and the role of a ketogenic diet. Curr Opin Clin Nutr Metab Care 19 (4): 294–299.
    [Link zum Abstract].
  • Zhao, F. et al. (2010): Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29 (20): 2962–2972.
    [Link zum Artikel].
  • Zuccoli, G. et al. (2010): Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab (Lond) 7: 33.
    [Link zum Artikel].

Ernährung und Zucker in der Krebsnachsorge

  • Aune, D. et al. (2012): Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 23 (10): 2536–2546.
    [Link zum Artikel].
  • Braakhuis, A. J.; Campion, P.; Bishop, K. S. (2016): Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 8 (9).
    [Link zum Artikel].
  • Champ, C. E. et al. (2012): Weight gain, metabolic syndrome, and breast cancer recurrence: are dietary recommendations supported by the data? Int J Breast Cancer 2012: 506868.
    [Link zum Artikel].
  • Emond, J. A. et al. (2014): Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. Cancer Epidemiol Biomarkers Prev 23 (7): 1273–1279.
    [Link zum Artikel].
  • Meyerhardt, J. A. et al. (2012): Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst 104 (22): 1702–1711.
    [Link zum Artikel].
  • Minicozzi, P. et al. (2013): High fasting blood glucose and obesity significantly and independently increase risk of breast cancer death in hormone receptor-positive disease. Eur J Cancer 49 (18): 3881–3888.
    [Link zum Abstract].

Besondere Lebensmittelinhaltsstoffe

Allgemein

  • Farzaei, M. H.; Bahramsoltani, R.; Rahimi, R. (2016): Phytochemicals as Adjunctive with Conventional Anticancer Therapies. Curr Pharm Des 22 (27): 4201–4218.
    [Link zum Artikel].
  • Keijer, J. et al. (2011): Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. Biochim Biophys Acta 1807 (6): 697–706.
    [Link zum Artikel].
  • Lodi, A. et al. (2016): Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. npj Precision Oncology 1 (8).
    [Link zum Artikel].

Brokkoli und Sulforaphan

  • Bauman, J. E. et al. (2016): Prevention of Carcinogen-Induced Oral Cancer by Sulforaphane. Cancer Prev Res (Phila) 9 (7): 547–557.
    [Link zum Artikel].
  • Bijangi-Vishehsaraei, K. et al. (2017): Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg: 1–12.
    [Link zum Abstract].
  • Ganai, S. A. (2016): Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 81: 250–257.
    [Link zum Abstract].
  • Jiang, L. L. et al. (2016): Sulforaphane suppresses in vitro and in vivo lung tumorigenesis through downregulation of HDAC activity. Biomed Pharmacother 78: 74–80.
    [Link zum Abstract].
  • Kallifatidis, G. et al. (2009): Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58 (7): 949–963.
    [Link zum Abstract ].
  • Kim, D. H. et al. (2015): Sulforaphane inhibits hypoxia-induced HIF-1alpha and VEGF expression and migration of human colon cancer cells. Int J Oncol 47 (6): 2226–2232.
    [Link zum Abstract].
  • Liu, K. C. et al. (2016): Sulforaphane Induces Cell Death through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells. Am J Chin Med: 1289–1310.
    [Link zum Abstract].
  • Martin, S. L.; Kala, R.; Tollefsbol, T. O. (2017): Mechanisms for inhibition of colon cancer cells by sulforaphane through epigenetic modulation of microRNA-21 and human telomerase reverse transcriptase (hTERT) down-regulation. Curr Cancer Drug Targets.
    [Link zum Artikel].
  • Sarkar, R. et al. (2012): Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins. Biochem Biophys Res Commun 427 (1): 80–85.
    [Link zum Abstract].

Curcuma und Curcumin

  • Allegra, A. et al. (2017): Anticancer Activity of Curcumin and Its Analogues: Preclinical and Clinical Studies. Cancer Invest 35 (1): 1–22.
    [Link zum Abstract].
  • Cruz-Corres et al. (2006):Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. In: Clin Gastroenterol Hepatol 4 (8), 1035–1038.
    [Link zum Abstract].
  • Deng, Y. I.; Verron, E.; Rohanizadeh, R. (2016): Molecular Mechanisms of Anti-metastatic Activity of Curcumin. Anticancer Res 36 (11): 5639–5647.
    [Link zum Abstract].
  • Naik, S.; Thakare, V.; Patil S (2011): Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: evidence of its antioxidant property. Exp Toxicol Pathol 63 (5): 419-431.
    [Link zum Abstract].
  • Killian, P. H. et al. (2012): Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis 33 (12): 2507–2519.
    [Link zum Artikel].
  • Mahlknecht, U. (2013): Den Krebs im Visier. Aktuel Ernahrungsmed 38 (S 01)S37-S41.
    [Link zum Artikel].
  • Murakami, A. et al. (2013): Curcumin combined with turmerones, essential oil components of turmeric, abolishes inflammation-associated mouse colon carcinogenesis. Biofactors 39 (2): 221–232.
    [Link zum Abstract ].
  • Schaffer, M.; Schaffer, P. M.; Bar-Sela, G. (2015): An update on Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 18 (6): 605–611.
    [Link zum Abstract].
  • Toden, S. et al. (2015): Novel Evidence for Curcumin and Boswellic Acid-Induced Chemoprevention through Regulation of miR-34a and miR-27a in Colorectal Cancer. Cancer Prev Res (Phila) 8 (5): 431–443.
    [Link zum Artikel].

Galactose

  • Isenberg, J. et al. (1997): Liver lectin blocking with D-galactose to prevent hepatic metastases in colorectal carcinoma patients. Anticancer Res 17 (5B): 3767–3772.
    [Link zum Artikel].
  • Kosik, J. et al. (1997): Prevention of hepatic metastases by liver lectin blocking with D-galactose in stomach cancer patients. A prospectively randomized clinical trial. Anticancer Res 17 (2B): 1411–1415.
    [Link zum Artikel].
  • Kosterlitz, H.; Wedler, H. W. (1933): Untersuchungen über die Verwertung der Galaktose in physiologischen und pathologischen Zuständen. Z. Ges. Exp. Med. 87 (1): 397–404.
    [Link zum Artikel].
  • Lembke, A.; Pause, B. (1989): Anticaries effectiveness of D(+)-galactose. Z Stomatol 86 (4): 179–189.
    [Link zum Artikel].
  • Li, N. et al. (2011): D-galactose induces necroptotic cell death in neuroblastoma cell lines. J Cell Biochem 112 (12): 3834–3844.
    [Link zum Artikel].
  • Mohammad, M. A. et al. (2011): Galactose promotes fat mobilization in obese lactating and nonlactating women. Am J Clin Nutr 93 (2): 374–381.
    [Link zum Artikel].
  • Warczynski, P. et al. (1997): Prevention of hepatic metastases by liver lectin blocking with D-galactose in colon cancer patients. A prospectively randomized clinical trial. Anticancer Res 17 (2B): 1223–1226.
    [Link zum Artikel].

Grüner Tee und EGCG

  • Am Dostal et al. (2015): The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: results of the Minnesota Green Tea Trial. Food Chem Toxicol 83: 26–35.
    [Link zum Artikel].
  • Fujiki, H. et al. (2015): Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. J Cancer Prev 20 (1): 1–4.
    [Link zum Artikel].
  • Hayakawa, S. et al. (2016): Anti-Cancer Effects of Green Tea by Either Anti- or Pro- Oxidative Mechanisms. Asian Pac J Cancer Prev 17 (4): 1649–1654.
    [Link zum Abstract].
  • Hu, F. et al. (2015): EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J Pharmacol Sci 128 (1): 27–34.
    [Link zum Artikel].
  • Huang, Y. et al. (2015): Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells. Oncol Rep 34 (3): 1162–1168.
    [Link zum Artikel].
  • Liu, J et al. (2016): Association of green tea consumption with mortality from all-cause, cardiovascular disease and cancer in a Chinese cohort of 165,000 adult men. Eur J Epidemiol. 2016 Sep;31(9):853-65. doi: 10.1007/s10654-016-0173-3. Epub 2016 Jul 2.
    [Link zum Abstract]
  • Mahlknecht, U. (2013): Den Krebs im Visier. Aktuel Ernahrungsmed 38 (S 01)S37-S41.
    [Link zum Artikel].
  • Mayr, C. et al. (2015): The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells. BMC Complement Altern Med 15: 194.
    [Link zum Artikel].
  • Mereles, D.; Hunstein, W. (2011): Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12 (9): 5592–5603.
    [Link zum Artikel].
  • Münstedt, K.; Männle, H. (2015): Grüner Tee zur primären und tertiären Prophylaxe des Mammakarzinoms. DZO 47 (01): 10–12.
    [Link zum Artikel].
  • Sanchez-Tena, S. et al. (2013): Epicatechin gallate impairs colon cancer cell metabolic productivity. J Agric Food Chem 61 (18): 4310–4317.
    [Link zum Abstract ].
  • Shay, J. et al. (2015): Molecular Mechanisms and Therapeutic Effects of (-)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. Oxid Med Cell Longev 2015: 181260.
    [Link zum Artikel].

Magnesium

  • Am Gorczyca et al. (2015): Association between magnesium intake and risk of colorectal cancer among postmenopausal women. Cancer Causes Control 26 (12): 1761–1769.
    [Link zum Artikel].
  • Dibaba, D. et al. (2015): Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study. Br J Cancer 113 (11): 1615–1621.
    [Link zum Artikel].
  • Ko, H. J. et al. (2014): Dietary magnesium intake and risk of cancer: a meta-analysis of epidemiologic studies. Nutr Cancer 66 (6): 915–923.
    [Link zum Artikel].
  • Mahabir, S. et al. (2008): Dietary magnesium and DNA repair capacity as risk factors for lung cancer. Carcinogenesis 29 (5): 949–956.
    [Link zum Artikel].
  • Tao, M. H. et al. (2016): Associations of intakes of magnesium and calcium and survival among women with breast cancer: results from Western New York Exposures and Breast Cancer (WEB) Study. Am J Cancer Res 6 (1): 105–113.
    [Link zum Artikel].

Polyphenole

  • Abdal, Dayem A. et al. (2016): The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients 8 (9).
    [Link zum Artikel].
  • Braakhuis, A. J.; Campion, P.; Bishop, K. S. (2016): Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 8 (9).
    [Link zum Abstract].
  • Jung, K. H. et al. (2013): Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1alpha activation. J Nucl Med 54 (12): 2161–2167.
    [Link zum Artikel].
  • Niedzwiecki, A. et al. (2016): Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 8 (9).
    [Link zum Artikel].
  • Shen, M.; Chan, T. H.; Dou, Q. P. (2012): Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer Agents Med Chem 12 (8): 891–901.
    [Link zum Artikel].
  • Zhou, W. et al. (2010): Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol 37 (3): 551–561.
    [Link zum Artikel].
  • Zhou, Y. et al. (2016): Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 8 (8).
    [Link zum Abstract].

Omega-3-Fettsäuren

  • Lorgeril, M. de; Salen, P. (2014): Helping women to good health: breast cancer, omega-3/omega-6 lipids, and related lifestyle factors. BMC Med 12: 54.
    [Link zum Artikel].
  • Manzi, L. et al. (2015): Effect of Dietary omega-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer. Biomed Res Int 2015: 137097.
    [Link zum Abstract].
  • Merendino, N. et al. (2013): Dietary omega -3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. Biomed Res Int 2013: 310186.
    [Link zum Abstract].
  • Mouradian, M. et al. (2015): Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog 54 (9): 810–820.
    [Link zum Abstract ].
  • Sun, H. et al. (2013): Anti-cancer activity of DHA on gastric cancer–an in vitro and in vivo study. Tumour Biol 34 (6): 3791–3800.
    [Link zum Abstract].
  • Yu, Jing et al. (2017): Effects of omega-3 fatty acids on patients undergoing surgery for gastrointestinal malignancy: a systematic review and meta-analysis. BMC Cancer 17 (1): 271.
    [Link zum Artikel].
  • Yum, H. W.; Na, H. K.; Surh, Y. J. (2016): Anti-inflammatory effects of docosahexaenoic acid: Implications for its cancer chemopreventive potential. Semin Cancer Biol.
    [Link zum Artikel].

Salvestrole

  • Schaefer, B. A. et al. (2012): Cancer and Related Case Studies Involving Salvestrol and CYP1B1. JOM 27 (3): 131–138.
    [Link zum Artikel].
  • Schaefer, B. A. et al. (2007): Nutrition and Cancer: Salvestrol Case Studies. JOM 22 (2): 177–182.
    [Link zum Artikel].
  • Schaefer, B. A. et al. (2010): Nutrition and Cancer: Further Case Studies Involving Salvestrol. JOM 25 (1): 17–23.
    [Link zum Artikel].
  • Tan, H. L. et al. (2007): Salvestrols: A New Perspective in Nutritional Research. JOM 22 (1): 39–47.
    [Link zum Artikel].
  • Ware, William R. (2009): Nutrition and the prevention and treatment of cancer: association of cytochrome P450 CYP1B1 with the role of fruit and fruit extracts. Integr Cancer Ther 8 (1): 22–28.
    [Link zum Artikel].

Tocomin, Vitamin E und Tocotrienole

  • Eitsuka, T. et al. (2016): Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int J Mol Sci 17 (10).
    [Link zum Artikel].
  • Husain, K. et al. (2011): Vitamin E delta-tocotrienol augments the antitumor activity of gemcitabine and suppresses constitutive NF-kappaB activation in pancreatic cancer. Mol Cancer Ther 10 (12): 2363–2372.
    [Link zum Artikel].
  • Jiang, Q. et al. (2012): Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 130 (3): 685–693.
    [Link zum Artikel].
  • Luk, S. U. et al. (2011): Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int J Cancer 128 (9): 2182–2191.
    [Link zum Artikel].
  • Shi, W. T. et al. (2016): Palm Tocotrienols Reduce Lipopolysaccharide-Stimulated Inflammatory Responses of Microglia. MJMHS 12 (2): 1–8.
    [Link zum Artikel].
  • Shibata, A. et al. (2008): Tocotrienol inhibits secretion of angiogenic factors from human colorectal adenocarcinoma cells by suppressing hypoxia-inducible factor-1alpha. J Nutr 138 (11): 2136–2142.
    [Link zum Artikel].
  • Sylvester, P. W. et al. (2014): Potential role of tocotrienols in the treatment and prevention of breast cancer. Biofactors 40 (1): 49–58.
    [Link zum Abstract ].
  • Sylvester, P. W. et al. (2011): Tocotrienol combination therapy results in synergistic anticancer response. Front Biosci (Landmark Ed) 16: 3183–3195.
    [Link zum Artikel].
  • Szabolcs, P. et al. (2016): A Systematic Review of Global Alpha-Tocopherol Status as Assessed by Nutritional Intake Levels and Blood Serum Concentrations. Int J Vitam Nutr Res: 1–21.
    [Link zum Artikel].
  • Yap, W. N. et al. (2010): In vivo evidence of gamma-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer. Pharmacology 85 (4): 248–258.
    [Link zum Abstract ].

Vitamin D3 und Vitamin K2

  • Gröber, U. et al. (2015): Vitamin D in der onkologischen Intervention. Update 2015. DZO 47 (04): 173–177.
    [Link zum Artikel].
  • McDonnell, S. L. et al. (2016): Serum 25-Hydroxyvitamin D Concentrations /=40 ng/ml Are Associated with 65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study. PLoS One 11 (4)e0152441.
    [Link zum Artikel].
  • Reichrath, J.; Reichrath, S. (2013): Die Haut als endokrines Organ. Vitamin D, Sonnenstrahlung und Krebsprävention. Zs.f.Orthomol.Med. 11 (02): 10–12.
    [Link zum Artikel].
  • Sada, E. et al. (2010): Vitamin K2 modulates differentiation and apoptosis of both myeloid and erythroid lineages. Eur J Haematol 85 (6): 538–548.
    [Link zum Abstract ].
  • Spitz, J. (2014): Zur Bedeutung des Sonnenhormons Vitamin D in der Onkologie – ein Update. DZO 46 (03): 96–102.
    [Link zum Artikel].